Exact Artificial Boundary Conditions for Continuum and Discrete Elasticity
نویسندگان
چکیده
For the continuum and discrete elastic equations, we derive exact artificial boundary conditions (ABCs), often referred to as transparent boundary conditions, that can be applied at a planar interface below which there are no forces. Solution of the elasticity equations can then be performed using this interface as an artificial boundary, often with greatly reduced computational effort, but without loss of accuracy. A general solvability requirement is presented for the existence of an artificial boundary operator for discrete systems (such as discrete elasticity) on an unbounded (semi-infinite) domain. The solvability requirement is validated by introducing a sum-of-exponentials ansatz for the solution below the artificial boundary. We also derive a new expression for the total energy for the system, involving only the region above the artificial boundary. Numerical examples are provided to confirm and illustrate the accuracy and effectiveness of the results.
منابع مشابه
Exact analytical approach for free longitudinal vibration of nanorods based on nonlocal elasticity theory from wave standpoint
In this paper, free longitudinal vibration of nanorods is investigated from the wave viewpoint. The Eringen’s nonlocal elasticity theory is used for nanorods modelling. Wave propagation in a medium has a similar formulation as vibrations and thus, it can be used to describe the vibration behavior. Boundaries reflect the propagating waves after incident. Firstly, the governing quation of nanoro...
متن کاملThree-dimensional elasticity solution for vibrational analysis of thick continuously graded sandwich plates with different boundary conditions using a two-parameter micromechanical model for agglomeration
An equivalent continuum model based on the Eshelby-Mori-Tanaka approach was employed to estimate the effective constitutive law for an elastic isotropic medium (i.e., the matrix) with oriented straight carbon nanotubes (CNTs). The two-dimensional generalized differential quadrature method was an efficient and accurate numerical tool for discretizing equations of motion and for implementing vari...
متن کاملExact Implementation of Multiple Initial Conditions in the DQ Solution of Higher-Order ODEs
The differential quadrature method (DQM) is one of the most elegant and useful approximate methods for solving initial and/or boundary value problems. It is easy to use and also straightforward to implement. However, the conventional DQM is well-known to have some difficulty in implementing multiple initial and/or boundary conditions at a given discrete point. To overcome this difficulty, this ...
متن کاملTOPOLOGICAL OPTIMIZATION OF VIBRATING CONTINUUM STRUCTURES FOR OPTIMAL NATURAL EIGENFREQUENCY
Keeping the eigenfrequencies of a structure away from the external excitation frequencies is one of the main goals in the design of vibrating structures in order to avoid risk of resonance. This paper is devoted to the topological design of freely vibrating continuum structures with the aim of maximizing the fundamental eigenfrequency. Since in the process of topology optimization some areas of...
متن کاملNonlinear Bending Analysis of Sector Graphene Sheet Embedded in Elastic Matrix Based on Nonlocal Continuum Mechanics
The nonlinear bending behavior of sector graphene sheets is studied subjected to uniform transverse loads resting on a Winkler-Pasternak elastic foundation using the nonlocal elasticity theory. Considering the nonlocal differential constitutive relations of Eringen theory based on first order shear deformation theory and using the von-Karman strain field, the equilibrium partial differential eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 66 شماره
صفحات -
تاریخ انتشار 2006